Quantcast
Channel: Planet Python
Viewing all articles
Browse latest Browse all 22462

Python Data: Collecting / Storing Tweets with Python and MySQL

$
0
0

A few days ago, I published Collecting / Storing Tweets with Python and MongoDB. In that post, I describe the steps needed to collect and store tweets gathered via the Twitter Streaming API.

I received a comment on that post asking how to store data into MySQL instead of MongoDB. Here’s what you’d need to do to make that change.

Collecting / Storing Tweets with Python and MySQL

In the previous post, we store the twitter data into MongoDB with one line of code:

db.twitter_search.insert(datajson)

Unlike MongoDB where we can insert the entire json object, if we want to use MySQL instead of MongoDB, we need to do some additional work with the ‘datajson’ object before storing it.

Let’s assume that we are interested in just capturing the username, date, Tweet and Tweet ID from twitter.  This is most likely the bare minimum information you’d want to capture from the API…there are many (many) more fields available but for now, we’ll go with these four.

Note: I’ll hold off on the MySQL specific changes for now and touch on them shortly.

Once you capture the tweet (line 38 in my original script) and have it stored in your datajson object, create a few variables to store the date, username, Tweet and ID.

text = datajson['text']
screen_name = datajson['user']['screen_name']
tweet_id = datajson['id']
created_at = parser.parse(datajson['created_at'])

Note in the above that we are using the

parser.parse()
 command from the
dateutil
  module to parse the created_at date for storage into Mysql.

Now that we have our variables ready to go, we’ll need to store those variables into MySQL.  Before we can do that, we need to set up a MySQL connection. I use the python-mysql connector but you are free to use what you need to.  You’ll need to do a

import MySQLdb
  to get the connector imported into your script (and assuming you installed the connector with
pip install mysql-python
.

You’ll need to create a table to store this data. You can use the sql statement below to do so if you need assistance / guidance.

CREATE TABLE `twitter` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `tweet_id` varchar(250) DEFAULT NULL,
 `screen_name` varchar(128) DEFAULT NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `text` text,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=56 DEFAULT CHARSET=utf8;

Now, let’s set up our MySQL connection, query and execute/commit for the script. I’ll use a function for this to be able to re-use it for each tweet captured.

def store_data(created_at, text, screen_name, tweet_id):
    db=MySQLdb.connect(host=HOST, user=USER, passwd=PASSWD, db=DATABASE, charset="utf8")
    cursor = db.cursor()
    insert_query = "INSERT INTO twitter (tweet_id, screen_name, created_at, text) VALUES (%s, %s, %s, %s)"
    cursor.execute(insert_query, (tweet_id, screen_name, created_at, text))
    db.commit()
    cursor.close()
    db.close()
    return

That’s it.  You are now collecting tweets and storing those tweets into a MySQL database.

Full Script

from __future__ import print_function
import tweepy
import json
import MySQLdb 
from dateutil import parser

WORDS = ['#bigdata', '#AI', '#datascience', '#machinelearning', '#ml', '#iot']

CONSUMER_KEY = "KEY"
CONSUMER_SECRET = "SECRET"
ACCESS_TOKEN = "TOKEN"
ACCESS_TOKEN_SECRET = "TOKEN_SECRET"

HOST = "YOUR_DATABASE_HOST"
USER = "YOUR_DATABASE_USER"
PASSWD = "YOUR_DATABASE_PASSWORD"
DATABASE = "YOUR_DATABASE"

# This function takes the 'created_at', 'text', 'screen_name' and 'tweet_id' and stores it
# into a MySQL database
def store_data(created_at, text, screen_name, tweet_id):
    db=MySQLdb.connect(host=HOST, user=USER, passwd=PASSWD, db=DATABASE, charset="utf8")
    cursor = db.cursor()
    insert_query = "INSERT INTO twitter (tweet_id, screen_name, created_at, text) VALUES (%s, %s, %s, %s)"
    cursor.execute(insert_query, (tweet_id, screen_name, created_at, text))
    db.commit()
    cursor.close()
    db.close()
    return

class StreamListener(tweepy.StreamListener):    
    #This is a class provided by tweepy to access the Twitter Streaming API. 

    def on_connect(self):
        # Called initially to connect to the Streaming API
        print("You are now connected to the streaming API.")
 
    def on_error(self, status_code):
        # On error - if an error occurs, display the error / status code
        print('An Error has occured: ' + repr(status_code))
        return False
 
    def on_data(self, data):
        #This is the meat of the script...it connects to your mongoDB and stores the tweet
        try:
           # Decode the JSON from Twitter
            datajson = json.loads(data)
            
            #grab the wanted data from the Tweet
            text = datajson['text']
            screen_name = datajson['user']['screen_name']
            tweet_id = datajson['id']
            created_at = parser.parse(datajson['created_at']) 

            #print out a message to the screen that we have collected a tweet
            print("Tweet collected at " + str(created_at))
            
            #insert the data into the MySQL database
            store_data(created_at, text, screen_name, tweet_id)
        
       except Exception as e:
           print(e)

auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET)
auth.set_access_token(ACCESS_TOKEN, ACCESS_TOKEN_SECRET)
#Set up the listener. The 'wait_on_rate_limit=True' is needed to help with Twitter API rate limiting.
listener = StreamListener(api=tweepy.API(wait_on_rate_limit=True)) 
streamer = tweepy.Stream(auth=auth, listener=listener)
print("Tracking: " + str(WORDS))
streamer.filter(track=WORDS)

 


MySQL for PythonWant more information on working with MySQL and Python? Check out the book titled MySQL for Python by Albert Lukaszewski.

 

The post Collecting / Storing Tweets with Python and MySQL appeared first on Python Data.


Viewing all articles
Browse latest Browse all 22462

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>